收藏本站| 欢迎收藏LED之家,LED之家是国内LED行业信息最全面的门户网站之一。
首页
登录免费注册一个新账号
我的账号
广州国际照明展览会(光亚展)
首页 》LED之家 》LED驱动 》分析补偿及测量高功率LED驱动器的控制回路 点击:737    LED知识讨论发表新主题
LED之家   永久地址:www.ledjia.com

  控制  LED驱动器  引脚  LED  白光LED  参数  电路  白光  LED动态  高功率  放大器  电极  设计  标准  二极管  转换器  LED驱动  制造商  资料

分析补偿及测量高功率LED驱动器的控制回路

LED之家  于2010-02-07 08:50:52  http://www.ledjia.com/ledhangye/viewarticle.php?id=6260

文章摘要:数学模型一直都有助于判定特定设计的最佳补偿组件,然而,补偿白光LED电流调节升压转换器的情况,则与补偿被设定为调节电压的相同转换器略微不同。以传统的方法测量控制回路相当不便,因为回馈FB引脚的阻抗不高,而且缺乏上端FB电阻。在RayRidley展示了简易小信号控制回路模型,适用于具备电流模式控制

数学模型一直都有助于判定特定设计的最佳补偿组件,然而,补偿白光LED电流调节升压转换器的情况,则与补偿被设定为调节电压的相同转换器略微不同。以传统的方法测量控制回路相当不便,因为回馈(FB)引脚的阻抗不高,而且缺乏上端FB电阻。在Ray Ridley 展示了简易小信号控制回路模型,适用于具备电流模式控制的升压转换器。下文说明Ridley 模型应如何修改才能适用于白光LED 电流调节升压转换器,同时,也将说明如何测量升压转换器的控制回路。

  回路组件

  如图1所示,为了从输入电压提供较高或较低的调节输出电压,任何可调式DC/DC 转换器都能够加以修改。在这类配置中,如果假设 ROUT 纯粹是电阻负载,则VOUT = IOUT × ROUT。当DC/DC 转换器用来给LED供电时,它会借着调节下端FB电阻控制通过LED的电流,如图2 所示。由于负载本身(LED)取代上端FB电阻的缘故,传统的小信号控制回路公式不再适用。DC 负载阻抗为

 

而且

 

从二极管资料表或从测量得出的 VFWD 是 ILED 的正向电压,而 n 是串联的LED 数量。

 

图1:用于调节电压的可调式DC/DC 转换器

 

图2:用于调节LED电流的可调式DC/DC转换器

  然而,从小信号的角度来看,负载阻抗包含REQ以及位于ILED的LED动态阻抗rD。虽然某些LED 制造商提供不同电流量的rD标准值,不过判定rD的最好方法是从所有制造商提供的LED I-V 标准曲线得出该值。图3显示OSRAM LW W5SM 高功率LED的I-V 曲线范例。rD 值是动态(或小信号)数量,其定义为电压变化除以电流变化,也就是rD = ΔVFWD/ΔILED。若要从图3 得出rD,只需要从VFWD与 ILED的起始处画出笔直的切线,然后计算斜率。举例来说,使用图3中切出的虚线,即可得出rD = (3.5– 2.0 V)/(1.000 – 0.010 A) = 1.51 W,而且ILED=350 mA。

 

图3:OSRAM LW W5SM的I-V曲线

  小信号模型

  对于小信号模型,此处将以TPS61165 峰值电流模型转换器为例,它能驱动3 个串联的OSRAM LW W5SM 零件。图 4a 显示电流调节升压转换器的同等小信号模型,而图 4b 显示较为简化的模型。公式 3 显示频率型 (s 域)模型,用来计算电流调节升压转换器与电压调节升压转换器的 DC 增益:

 

其中的通用变量为

 

以及

 

 

图4:电流调节升压转换器的小信号模型

  计算两种电路的负载周期D以及VOUT与REQ的修改值所使用的方式都相同。Sn 及Se分别是升压转换器的自然形成电感斜率与补偿斜率,而fSW是切换频率。关于电压调节升压转换器的小信号模型与电流调节升压转换器的模型,两者之间真正的差异来自乘以跨导用项(1–D)/Ri 的抗阻KR以及主要电极wp。这些差异已在表1予以概述。详细信息请见参照 1。由于在调节电压的转换器中,RSENSE 值一般远低于 ROUT 值,因此,电流调节转换器的增益 (其中 ROUT = REQ) 几乎都低于电压调节转换器的增益。

 

表1:公式3中两种转换器模型的差异

  测量回路

  若要测量控制回路增益与电压调节转换器的相位,网络或专用回路增益/相位分析仪一般会使用1:1变压器将小信号通过小阻抗(RINJ)注入回路中。然后,分析仪便会根据频率测量并比较A点的注入信号与R点的回传信号,之后,报告幅度差异(增益)与时间延迟(相位) 的比例。只要A点的阻抗远低于 R 点的阻抗,即可在回路中的任一处插入此阻抗,否则注入的信号会过大,因而干扰转换器的运作点。如图 5 所示,高阻抗节点是一般插入此阻抗的位置,也是FB电阻在输出电容(低阻抗节点) 侦测输出电压的地方。

 

图5:电压调节转换器的控制回路测量

  在电流调节配置中,如果负载本身是上端FB电阻,则无法通过与LED串联的方式将注入电阻插入。转换器的运作点必须先予以变更,才能将电阻插入于FB引脚与感应电阻之间,如图6所示。在某些情况下,可能需要非反向单位增益缓冲放大器,以降低注入点的阻抗,并减少测量噪声。

 

图6:电流调节转换器的控制回路测量

  用来测量回路的是Venable回路分析仪,它与图6中的测量设定相同但不含放大器,而且RINJ = 51.1W。电流调节转换器的模型是以Mathcad? 构建,并且使用TPS61170的数据表设计参数,其中的核心与TPS61165 相同。当VIN = 5V且ILED经设定为350 mA时,该模型会产生TPS61165EVM的预期回路响应,如图7 所示,可便于与测得的数据进行比较。

 

图7:在VIN =5V且ILED=350mA的情况下所测得及模拟的回路增益与相位  

  结论

  数学模型虽然并非全然准确,但不失为设计人员设计 WLED 电流调节升压转换器时可以运用的初步方法。设计人员也能够以其中一种方法测量控制回路。


LED之家小提示:若文章图片无法显示,又急需查看图片,请将需求文章的网址发往邮箱:wantled@163.com ,本站将尽快将相关图片回复到您的邮箱。



相关词语:  控制  LED驱动器  引脚  LED  白光LED  参数  电路  白光  LED动态  高功率  放大器  电极  设计  标准  二极管  转换器  LED驱动  制造商  资料

LED之家永久地址:www.ledjia.com
首页 -- 联系我们 -- 使用帮助 -- 收藏本站 -- 设为首页

Copyright ? 2008~2024 www.ledjia.com. All Rights Reserved.  [ 粤ICP备05006808号 ]  版权所有: LED之家.